3.210 \(\int \tanh ^3(x) \sqrt {a+b \tanh ^2(x)} \, dx\)

Optimal. Leaf size=63 \[ -\frac {\left (a+b \tanh ^2(x)\right )^{3/2}}{3 b}-\sqrt {a+b \tanh ^2(x)}+\sqrt {a+b} \tanh ^{-1}\left (\frac {\sqrt {a+b \tanh ^2(x)}}{\sqrt {a+b}}\right ) \]

[Out]

arctanh((a+b*tanh(x)^2)^(1/2)/(a+b)^(1/2))*(a+b)^(1/2)-(a+b*tanh(x)^2)^(1/2)-1/3*(a+b*tanh(x)^2)^(3/2)/b

________________________________________________________________________________________

Rubi [A]  time = 0.12, antiderivative size = 63, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.353, Rules used = {3670, 446, 80, 50, 63, 208} \[ -\frac {\left (a+b \tanh ^2(x)\right )^{3/2}}{3 b}-\sqrt {a+b \tanh ^2(x)}+\sqrt {a+b} \tanh ^{-1}\left (\frac {\sqrt {a+b \tanh ^2(x)}}{\sqrt {a+b}}\right ) \]

Antiderivative was successfully verified.

[In]

Int[Tanh[x]^3*Sqrt[a + b*Tanh[x]^2],x]

[Out]

Sqrt[a + b]*ArcTanh[Sqrt[a + b*Tanh[x]^2]/Sqrt[a + b]] - Sqrt[a + b*Tanh[x]^2] - (a + b*Tanh[x]^2)^(3/2)/(3*b)

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 80

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(c + d*x)
^(n + 1)*(e + f*x)^(p + 1))/(d*f*(n + p + 2)), x] + Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(
d*f*(n + p + 2)), Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 2,
0]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 3670

Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol]
 :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Dist[(c*ff)/f, Subst[Int[(((d*ff*x)/c)^m*(a + b*(ff*x)^n)^p)/(c^
2 + ff^2*x^2), x], x, (c*Tan[e + f*x])/ff], x]] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && (IGtQ[p, 0] || EqQ
[n, 2] || EqQ[n, 4] || (IntegerQ[p] && RationalQ[n]))

Rubi steps

\begin {align*} \int \tanh ^3(x) \sqrt {a+b \tanh ^2(x)} \, dx &=\operatorname {Subst}\left (\int \frac {x^3 \sqrt {a+b x^2}}{1-x^2} \, dx,x,\tanh (x)\right )\\ &=\frac {1}{2} \operatorname {Subst}\left (\int \frac {x \sqrt {a+b x}}{1-x} \, dx,x,\tanh ^2(x)\right )\\ &=-\frac {\left (a+b \tanh ^2(x)\right )^{3/2}}{3 b}+\frac {1}{2} \operatorname {Subst}\left (\int \frac {\sqrt {a+b x}}{1-x} \, dx,x,\tanh ^2(x)\right )\\ &=-\sqrt {a+b \tanh ^2(x)}-\frac {\left (a+b \tanh ^2(x)\right )^{3/2}}{3 b}+\frac {1}{2} (a+b) \operatorname {Subst}\left (\int \frac {1}{(1-x) \sqrt {a+b x}} \, dx,x,\tanh ^2(x)\right )\\ &=-\sqrt {a+b \tanh ^2(x)}-\frac {\left (a+b \tanh ^2(x)\right )^{3/2}}{3 b}+\frac {(a+b) \operatorname {Subst}\left (\int \frac {1}{1+\frac {a}{b}-\frac {x^2}{b}} \, dx,x,\sqrt {a+b \tanh ^2(x)}\right )}{b}\\ &=\sqrt {a+b} \tanh ^{-1}\left (\frac {\sqrt {a+b \tanh ^2(x)}}{\sqrt {a+b}}\right )-\sqrt {a+b \tanh ^2(x)}-\frac {\left (a+b \tanh ^2(x)\right )^{3/2}}{3 b}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.18, size = 60, normalized size = 0.95 \[ \sqrt {a+b} \tanh ^{-1}\left (\frac {\sqrt {a+b \tanh ^2(x)}}{\sqrt {a+b}}\right )-\frac {\sqrt {a+b \tanh ^2(x)} \left (a+b \tanh ^2(x)+3 b\right )}{3 b} \]

Antiderivative was successfully verified.

[In]

Integrate[Tanh[x]^3*Sqrt[a + b*Tanh[x]^2],x]

[Out]

Sqrt[a + b]*ArcTanh[Sqrt[a + b*Tanh[x]^2]/Sqrt[a + b]] - (Sqrt[a + b*Tanh[x]^2]*(a + 3*b + b*Tanh[x]^2))/(3*b)

________________________________________________________________________________________

fricas [B]  time = 0.58, size = 2329, normalized size = 36.97 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tanh(x)^2)^(1/2)*tanh(x)^3,x, algorithm="fricas")

[Out]

[1/12*(3*(b*cosh(x)^6 + 6*b*cosh(x)*sinh(x)^5 + b*sinh(x)^6 + 3*b*cosh(x)^4 + 3*(5*b*cosh(x)^2 + b)*sinh(x)^4
+ 4*(5*b*cosh(x)^3 + 3*b*cosh(x))*sinh(x)^3 + 3*b*cosh(x)^2 + 3*(5*b*cosh(x)^4 + 6*b*cosh(x)^2 + b)*sinh(x)^2
+ 6*(b*cosh(x)^5 + 2*b*cosh(x)^3 + b*cosh(x))*sinh(x) + b)*sqrt(a + b)*log(((a^3 + a^2*b)*cosh(x)^8 + 8*(a^3 +
 a^2*b)*cosh(x)*sinh(x)^7 + (a^3 + a^2*b)*sinh(x)^8 + 2*(2*a^3 + a^2*b)*cosh(x)^6 + 2*(2*a^3 + a^2*b + 14*(a^3
 + a^2*b)*cosh(x)^2)*sinh(x)^6 + 4*(14*(a^3 + a^2*b)*cosh(x)^3 + 3*(2*a^3 + a^2*b)*cosh(x))*sinh(x)^5 + (6*a^3
 + 4*a^2*b - a*b^2 + b^3)*cosh(x)^4 + (70*(a^3 + a^2*b)*cosh(x)^4 + 6*a^3 + 4*a^2*b - a*b^2 + b^3 + 30*(2*a^3
+ a^2*b)*cosh(x)^2)*sinh(x)^4 + 4*(14*(a^3 + a^2*b)*cosh(x)^5 + 10*(2*a^3 + a^2*b)*cosh(x)^3 + (6*a^3 + 4*a^2*
b - a*b^2 + b^3)*cosh(x))*sinh(x)^3 + a^3 + 3*a^2*b + 3*a*b^2 + b^3 + 2*(2*a^3 + 3*a^2*b - b^3)*cosh(x)^2 + 2*
(14*(a^3 + a^2*b)*cosh(x)^6 + 15*(2*a^3 + a^2*b)*cosh(x)^4 + 2*a^3 + 3*a^2*b - b^3 + 3*(6*a^3 + 4*a^2*b - a*b^
2 + b^3)*cosh(x)^2)*sinh(x)^2 + sqrt(2)*(a^2*cosh(x)^6 + 6*a^2*cosh(x)*sinh(x)^5 + a^2*sinh(x)^6 + 3*a^2*cosh(
x)^4 + 3*(5*a^2*cosh(x)^2 + a^2)*sinh(x)^4 + 4*(5*a^2*cosh(x)^3 + 3*a^2*cosh(x))*sinh(x)^3 + (3*a^2 + 2*a*b -
b^2)*cosh(x)^2 + (15*a^2*cosh(x)^4 + 18*a^2*cosh(x)^2 + 3*a^2 + 2*a*b - b^2)*sinh(x)^2 + a^2 + 2*a*b + b^2 + 2
*(3*a^2*cosh(x)^5 + 6*a^2*cosh(x)^3 + (3*a^2 + 2*a*b - b^2)*cosh(x))*sinh(x))*sqrt(a + b)*sqrt(((a + b)*cosh(x
)^2 + (a + b)*sinh(x)^2 + a - b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2)) + 4*(2*(a^3 + a^2*b)*cosh(x)^7 +
 3*(2*a^3 + a^2*b)*cosh(x)^5 + (6*a^3 + 4*a^2*b - a*b^2 + b^3)*cosh(x)^3 + (2*a^3 + 3*a^2*b - b^3)*cosh(x))*si
nh(x))/(cosh(x)^6 + 6*cosh(x)^5*sinh(x) + 15*cosh(x)^4*sinh(x)^2 + 20*cosh(x)^3*sinh(x)^3 + 15*cosh(x)^2*sinh(
x)^4 + 6*cosh(x)*sinh(x)^5 + sinh(x)^6)) + 3*(b*cosh(x)^6 + 6*b*cosh(x)*sinh(x)^5 + b*sinh(x)^6 + 3*b*cosh(x)^
4 + 3*(5*b*cosh(x)^2 + b)*sinh(x)^4 + 4*(5*b*cosh(x)^3 + 3*b*cosh(x))*sinh(x)^3 + 3*b*cosh(x)^2 + 3*(5*b*cosh(
x)^4 + 6*b*cosh(x)^2 + b)*sinh(x)^2 + 6*(b*cosh(x)^5 + 2*b*cosh(x)^3 + b*cosh(x))*sinh(x) + b)*sqrt(a + b)*log
(-((a + b)*cosh(x)^4 + 4*(a + b)*cosh(x)*sinh(x)^3 + (a + b)*sinh(x)^4 - 2*b*cosh(x)^2 + 2*(3*(a + b)*cosh(x)^
2 - b)*sinh(x)^2 + sqrt(2)*(cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2 - 1)*sqrt(a + b)*sqrt(((a + b)*cosh(x)^2
 + (a + b)*sinh(x)^2 + a - b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2)) + 4*((a + b)*cosh(x)^3 - b*cosh(x))
*sinh(x) + a + b)/(cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2)) - 4*sqrt(2)*((a + 4*b)*cosh(x)^4 + 4*(a + 4*b)*
cosh(x)*sinh(x)^3 + (a + 4*b)*sinh(x)^4 + 2*(a + 2*b)*cosh(x)^2 + 2*(3*(a + 4*b)*cosh(x)^2 + a + 2*b)*sinh(x)^
2 + 4*((a + 4*b)*cosh(x)^3 + (a + 2*b)*cosh(x))*sinh(x) + a + 4*b)*sqrt(((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2
 + a - b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2)))/(b*cosh(x)^6 + 6*b*cosh(x)*sinh(x)^5 + b*sinh(x)^6 + 3
*b*cosh(x)^4 + 3*(5*b*cosh(x)^2 + b)*sinh(x)^4 + 4*(5*b*cosh(x)^3 + 3*b*cosh(x))*sinh(x)^3 + 3*b*cosh(x)^2 + 3
*(5*b*cosh(x)^4 + 6*b*cosh(x)^2 + b)*sinh(x)^2 + 6*(b*cosh(x)^5 + 2*b*cosh(x)^3 + b*cosh(x))*sinh(x) + b), -1/
6*(3*(b*cosh(x)^6 + 6*b*cosh(x)*sinh(x)^5 + b*sinh(x)^6 + 3*b*cosh(x)^4 + 3*(5*b*cosh(x)^2 + b)*sinh(x)^4 + 4*
(5*b*cosh(x)^3 + 3*b*cosh(x))*sinh(x)^3 + 3*b*cosh(x)^2 + 3*(5*b*cosh(x)^4 + 6*b*cosh(x)^2 + b)*sinh(x)^2 + 6*
(b*cosh(x)^5 + 2*b*cosh(x)^3 + b*cosh(x))*sinh(x) + b)*sqrt(-a - b)*arctan(sqrt(2)*(a*cosh(x)^2 + 2*a*cosh(x)*
sinh(x) + a*sinh(x)^2 + a + b)*sqrt(-a - b)*sqrt(((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 + a - b)/(cosh(x)^2 -
2*cosh(x)*sinh(x) + sinh(x)^2))/((a^2 + a*b)*cosh(x)^4 + 4*(a^2 + a*b)*cosh(x)*sinh(x)^3 + (a^2 + a*b)*sinh(x)
^4 + (2*a^2 + a*b - b^2)*cosh(x)^2 + (6*(a^2 + a*b)*cosh(x)^2 + 2*a^2 + a*b - b^2)*sinh(x)^2 + a^2 + 2*a*b + b
^2 + 2*(2*(a^2 + a*b)*cosh(x)^3 + (2*a^2 + a*b - b^2)*cosh(x))*sinh(x))) + 3*(b*cosh(x)^6 + 6*b*cosh(x)*sinh(x
)^5 + b*sinh(x)^6 + 3*b*cosh(x)^4 + 3*(5*b*cosh(x)^2 + b)*sinh(x)^4 + 4*(5*b*cosh(x)^3 + 3*b*cosh(x))*sinh(x)^
3 + 3*b*cosh(x)^2 + 3*(5*b*cosh(x)^4 + 6*b*cosh(x)^2 + b)*sinh(x)^2 + 6*(b*cosh(x)^5 + 2*b*cosh(x)^3 + b*cosh(
x))*sinh(x) + b)*sqrt(-a - b)*arctan(sqrt(2)*(cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2 - 1)*sqrt(-a - b)*sqrt
(((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 + a - b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2))/((a + b)*cosh(x)
^4 + 4*(a + b)*cosh(x)*sinh(x)^3 + (a + b)*sinh(x)^4 + 2*(a - b)*cosh(x)^2 + 2*(3*(a + b)*cosh(x)^2 + a - b)*s
inh(x)^2 + 4*((a + b)*cosh(x)^3 + (a - b)*cosh(x))*sinh(x) + a + b)) + 2*sqrt(2)*((a + 4*b)*cosh(x)^4 + 4*(a +
 4*b)*cosh(x)*sinh(x)^3 + (a + 4*b)*sinh(x)^4 + 2*(a + 2*b)*cosh(x)^2 + 2*(3*(a + 4*b)*cosh(x)^2 + a + 2*b)*si
nh(x)^2 + 4*((a + 4*b)*cosh(x)^3 + (a + 2*b)*cosh(x))*sinh(x) + a + 4*b)*sqrt(((a + b)*cosh(x)^2 + (a + b)*sin
h(x)^2 + a - b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2)))/(b*cosh(x)^6 + 6*b*cosh(x)*sinh(x)^5 + b*sinh(x)
^6 + 3*b*cosh(x)^4 + 3*(5*b*cosh(x)^2 + b)*sinh(x)^4 + 4*(5*b*cosh(x)^3 + 3*b*cosh(x))*sinh(x)^3 + 3*b*cosh(x)
^2 + 3*(5*b*cosh(x)^4 + 6*b*cosh(x)^2 + b)*sinh(x)^2 + 6*(b*cosh(x)^5 + 2*b*cosh(x)^3 + b*cosh(x))*sinh(x) + b
)]

________________________________________________________________________________________

giac [B]  time = 2.18, size = 630, normalized size = 10.00 \[ -\frac {1}{2} \, \sqrt {a + b} \log \left ({\left | -{\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )} {\left (a + b\right )} - \sqrt {a + b} {\left (a - b\right )} \right |}\right ) + \frac {1}{2} \, \sqrt {a + b} \log \left ({\left | -\sqrt {a + b} e^{\left (2 \, x\right )} + \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b} + \sqrt {a + b} \right |}\right ) - \frac {1}{2} \, \sqrt {a + b} \log \left ({\left | -\sqrt {a + b} e^{\left (2 \, x\right )} + \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b} - \sqrt {a + b} \right |}\right ) - \frac {4 \, {\left (3 \, {\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )}^{5} {\left (a + 2 \, b\right )} + 3 \, {\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )}^{4} {\left (3 \, a + 2 \, b\right )} \sqrt {a + b} + 2 \, {\left (3 \, a^{2} - 3 \, a b - 10 \, b^{2}\right )} {\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )}^{3} - 6 \, {\left (a^{2} + 3 \, a b + 6 \, b^{2}\right )} {\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )}^{2} \sqrt {a + b} - 3 \, {\left (3 \, a^{3} + 4 \, a^{2} b - 9 \, a b^{2} - 26 \, b^{3}\right )} {\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )} - {\left (3 \, a^{3} - 17 \, a b^{2} + 34 \, b^{3}\right )} \sqrt {a + b}\right )}}{3 \, {\left ({\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )}^{2} + 2 \, {\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )} \sqrt {a + b} + a - 3 \, b\right )}^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tanh(x)^2)^(1/2)*tanh(x)^3,x, algorithm="giac")

[Out]

-1/2*sqrt(a + b)*log(abs(-(sqrt(a + b)*e^(2*x) - sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a +
b))*(a + b) - sqrt(a + b)*(a - b))) + 1/2*sqrt(a + b)*log(abs(-sqrt(a + b)*e^(2*x) + sqrt(a*e^(4*x) + b*e^(4*x
) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b) + sqrt(a + b))) - 1/2*sqrt(a + b)*log(abs(-sqrt(a + b)*e^(2*x) + sqrt(a
*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b) - sqrt(a + b))) - 4/3*(3*(sqrt(a + b)*e^(2*x) - sqrt
(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b))^5*(a + 2*b) + 3*(sqrt(a + b)*e^(2*x) - sqrt(a*e^(
4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b))^4*(3*a + 2*b)*sqrt(a + b) + 2*(3*a^2 - 3*a*b - 10*b^2)*
(sqrt(a + b)*e^(2*x) - sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b))^3 - 6*(a^2 + 3*a*b + 6
*b^2)*(sqrt(a + b)*e^(2*x) - sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b))^2*sqrt(a + b) -
3*(3*a^3 + 4*a^2*b - 9*a*b^2 - 26*b^3)*(sqrt(a + b)*e^(2*x) - sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e
^(2*x) + a + b)) - (3*a^3 - 17*a*b^2 + 34*b^3)*sqrt(a + b))/((sqrt(a + b)*e^(2*x) - sqrt(a*e^(4*x) + b*e^(4*x)
 + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b))^2 + 2*(sqrt(a + b)*e^(2*x) - sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) -
 2*b*e^(2*x) + a + b))*sqrt(a + b) + a - 3*b)^3

________________________________________________________________________________________

maple [B]  time = 0.09, size = 253, normalized size = 4.02 \[ -\frac {\left (a +b \left (\tanh ^{2}\relax (x )\right )\right )^{\frac {3}{2}}}{3 b}-\frac {\sqrt {\left (\tanh \relax (x )-1\right )^{2} b +2 \left (\tanh \relax (x )-1\right ) b +a +b}}{2}-\frac {\sqrt {b}\, \ln \left (\frac {\left (\tanh \relax (x )-1\right ) b +b}{\sqrt {b}}+\sqrt {\left (\tanh \relax (x )-1\right )^{2} b +2 \left (\tanh \relax (x )-1\right ) b +a +b}\right )}{2}+\frac {\sqrt {a +b}\, \ln \left (\frac {2 a +2 b +2 \left (\tanh \relax (x )-1\right ) b +2 \sqrt {a +b}\, \sqrt {\left (\tanh \relax (x )-1\right )^{2} b +2 \left (\tanh \relax (x )-1\right ) b +a +b}}{\tanh \relax (x )-1}\right )}{2}-\frac {\sqrt {\left (1+\tanh \relax (x )\right )^{2} b -2 \left (1+\tanh \relax (x )\right ) b +a +b}}{2}+\frac {\sqrt {b}\, \ln \left (\frac {\left (1+\tanh \relax (x )\right ) b -b}{\sqrt {b}}+\sqrt {\left (1+\tanh \relax (x )\right )^{2} b -2 \left (1+\tanh \relax (x )\right ) b +a +b}\right )}{2}+\frac {\sqrt {a +b}\, \ln \left (\frac {2 a +2 b -2 \left (1+\tanh \relax (x )\right ) b +2 \sqrt {a +b}\, \sqrt {\left (1+\tanh \relax (x )\right )^{2} b -2 \left (1+\tanh \relax (x )\right ) b +a +b}}{1+\tanh \relax (x )}\right )}{2} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*tanh(x)^2)^(1/2)*tanh(x)^3,x)

[Out]

-1/3*(a+b*tanh(x)^2)^(3/2)/b-1/2*((tanh(x)-1)^2*b+2*(tanh(x)-1)*b+a+b)^(1/2)-1/2*b^(1/2)*ln(((tanh(x)-1)*b+b)/
b^(1/2)+((tanh(x)-1)^2*b+2*(tanh(x)-1)*b+a+b)^(1/2))+1/2*(a+b)^(1/2)*ln((2*a+2*b+2*(tanh(x)-1)*b+2*(a+b)^(1/2)
*((tanh(x)-1)^2*b+2*(tanh(x)-1)*b+a+b)^(1/2))/(tanh(x)-1))-1/2*((1+tanh(x))^2*b-2*(1+tanh(x))*b+a+b)^(1/2)+1/2
*b^(1/2)*ln(((1+tanh(x))*b-b)/b^(1/2)+((1+tanh(x))^2*b-2*(1+tanh(x))*b+a+b)^(1/2))+1/2*(a+b)^(1/2)*ln((2*a+2*b
-2*(1+tanh(x))*b+2*(a+b)^(1/2)*((1+tanh(x))^2*b-2*(1+tanh(x))*b+a+b)^(1/2))/(1+tanh(x)))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {b \tanh \relax (x)^{2} + a} \tanh \relax (x)^{3}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tanh(x)^2)^(1/2)*tanh(x)^3,x, algorithm="maxima")

[Out]

integrate(sqrt(b*tanh(x)^2 + a)*tanh(x)^3, x)

________________________________________________________________________________________

mupad [B]  time = 3.47, size = 66, normalized size = 1.05 \[ -\sqrt {b\,{\mathrm {tanh}\relax (x)}^2+a}-\frac {{\left (b\,{\mathrm {tanh}\relax (x)}^2+a\right )}^{3/2}}{3\,b}-2\,\mathrm {atan}\left (\frac {2\,\sqrt {b\,{\mathrm {tanh}\relax (x)}^2+a}\,\sqrt {-\frac {a}{4}-\frac {b}{4}}}{a+b}\right )\,\sqrt {-\frac {a}{4}-\frac {b}{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tanh(x)^3*(a + b*tanh(x)^2)^(1/2),x)

[Out]

- (a + b*tanh(x)^2)^(1/2) - (a + b*tanh(x)^2)^(3/2)/(3*b) - 2*atan((2*(a + b*tanh(x)^2)^(1/2)*(- a/4 - b/4)^(1
/2))/(a + b))*(- a/4 - b/4)^(1/2)

________________________________________________________________________________________

sympy [A]  time = 4.28, size = 71, normalized size = 1.13 \[ - \frac {2 \left (\frac {b^{2} \sqrt {a + b \tanh ^{2}{\relax (x )}}}{2} + \frac {b^{2} \left (a + b\right ) \operatorname {atan}{\left (\frac {\sqrt {a + b \tanh ^{2}{\relax (x )}}}{\sqrt {- a - b}} \right )}}{2 \sqrt {- a - b}} + \frac {b \left (a + b \tanh ^{2}{\relax (x )}\right )^{\frac {3}{2}}}{6}\right )}{b^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tanh(x)**2)**(1/2)*tanh(x)**3,x)

[Out]

-2*(b**2*sqrt(a + b*tanh(x)**2)/2 + b**2*(a + b)*atan(sqrt(a + b*tanh(x)**2)/sqrt(-a - b))/(2*sqrt(-a - b)) +
b*(a + b*tanh(x)**2)**(3/2)/6)/b**2

________________________________________________________________________________________